How Does the Opoid System Control Pain, Reward and Addictive Behavior
Science Daily — The opioid system controls pain, reward and addictive behaviors. Opioids exert their pharmacological actions through three opioid receptors, mu, delta and kappa whose genes have been cloned (Oprm, Oprd1 and Oprk1, respectively). Opioid receptors in the brain are activated by a family of endogenous peptides like enkephalins, dynorphins and endorphin, which are released by neurons. Opioid receptors can also be activated exogenously by alkaloid opiates, the prototype of which is morphine, which remains the most valuable painkiller in contemporary medicine.
By acting at opioid receptors, opiates such as morphine or heroin (a close chemically synthesized derivative) are extremely potent pain-killers, but are also highly addictive drugs. Brigitte Kieffer presents at the 20th ECNP congress on Neuropsychopharmacology 2007, Vienna, Austria, exciting new methods that now allow to understand how molecules act in the brain and control behavior.
To understand how molecules act in the brain and control behavior one can manipulate genes encoding these molecules in complex organisms, such as the mouse, and explore the consequences of these targeted genetic manipulations on animal responses in vivo.
Today, genetically modified mouse models represent a state-of-the art approach towards understanding brain function.
The direct comparison of mice lacking each of the three opioid-receptor genes reveals that mu- and delta-opioid receptors act oppositely in regulating emotional reactivity. This highlights a novel aspect of mu- and delta-receptor interactions, which contrasts with the former commonly accepted idea that activation of mu- and delta-receptors produces similar biological effects (Traynor & Elliot, 1993).
mu-opioid-receptor
The finding that morphine's analgesic and addictive properties are abolished in mice lacking the mu-opioid receptor has unambiguously demonstrated that mu-receptors mediate both the therapeutic and the adverse activities of this compound (Matthes 1996). Importantly, a series of studies has shown that the reinforcing properties of alcohol, cannabinoids, and nicotine -- each of which acts at a different receptor -- are also strongly diminished in these mutant mice. The genetic approach therefore highlights mu-receptors as convergent molecular switches, which mediate reinforcement following direct (morphine) or indirect activation (non-opioid drugs of abuse; see Contet 2004).
Science Daily
No comments:
Post a Comment